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Seismic probabilistic risk assessment

Seismic probabilistic risk assessment (SPRA) is dedicated to estimating the safety of a
mechanical structure subjected to seismic ground motions and consists in three main
steps 1:

1) Estimation of the probability measure λ of annual occurence of a seismic
ground motion of intensity a ∈ R+. ↪→ Probabilistic Seismic Hazard Analysis
(PSHA);

2) The estimation of the probability of failure ψ(a) of a structure conditional to
the seismic intensity a. ψ is the seismic fragility curve;

3) The estimation of the annual probability of failure of the structure:

Pf =

∫
ψ(a)dλ(a) .

↪→ This thesis focuses on the second step.

1Robert P. Kennedy. Risk based seismic design criteria.
Nuclear Engineering and Design, 1999
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Seismic fragility curve

ψ(a) = P(Z > C|A = a)

Z: Mechanical demand of the structure, obtained using time-consuming
numerical simulations;

C: Critical level for which the structure is considered in a failure state;

A: Intensity measure of a seismic ground motion. Scalar value representing the
intensity of the temporal seismic signal.
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Classical estimation framework
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Expert judgement estimation

The first approach proposed in the 1980s for seismic fragility curves evaluation is
based on expert judgements 2.

The seismic capacityAc is defined by

Ac = AmεRεU ,

whereAm is the median capacity, εR and εU follow lognormal distributions with unit
median.

εR → Uncertainty from the seismic ground motions.
εU → Uncertainty coming from a lack of knowledge on the system.

Fragility curve evaluation

ψ(a) = P(Ac ≤ a) .

2R.P. Kennedy, C.A. Cornell, R.D. Campbell, S. Kaplan, and H.F. Perla. Probabilistic seismic safety study of an existing
nuclear power plant.

Nuclear Engineering and Design, 59(2):315 – 338, 1980
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Motivation of the thesis

The sources of uncertainties are divided in two groups3.

The aleatory uncertainties coming from the natural variability of physical
phenomena;

The epistemic uncertainties coming from a lack of knowledge of the system
studied. They can be reduced in the short term (data gathering, experts
knowledge,...);

This is a purely practical separation of uncertainties sources that is useful for
engineering studies;

The effects of epistemic uncertainties in fragility analysis are usually assessed
using expert judgements.

Goal: Data-driven assessment of epistemic uncertainties on seismic fragility curves
using computer simulations→ Uncertainty Quantification (UQ) methodology.

3A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105–112, 2009
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Outline of the defense

1 Uncertainty Quantification

2 Surrogate modeling of computer codes using Gaussian
process

3 Global sensitivity analysis on seismic fragility curves

4 Sequential design of experiments

5 Conclusion and perspectives
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Uncertainty Quantification

UQ is an interdisciplinary framework aiming to assess the uncertainties tainting a
complex engineering system 4. It has several objectives:

Optimize the exploitation under costs and risks constraints;

Estimate a regulatory criterion;

Acquire a better knowledge of the system under study.

The computer model of the engineering system is modeled as a functionM : Rp 7→
R

4E. De Rocquigny, N. Devictor, S. Tarantola, Y. Lefebvre, N. Pérot, W. Castaings, F. Mangeant, C. Schwob, R. Lavin, J.R.

Masse, P. Limbourg, W. Kanning, and P.H.A.J.M. Gelder. Uncertainty in industrial practice: A guide to quantitative uncertainty
management.

Wiley, 2008
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Uncertainty Quantification5

5E. De Rocquigny, N. Devictor, S. Tarantola, Y. Lefebvre, N. Pérot, W. Castaings, F. Mangeant, C. Schwob, R. Lavin, J.R.

Masse, P. Limbourg, W. Kanning, and P.H.A.J.M. Gelder. Uncertainty in industrial practice: A guide to quantitative uncertainty
management.

Wiley, 2008
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Extension to earthquake engineering

The motivation of the thesis is to perform Uncertainty Quantification on the
seismic fragility curves;

We consider that the source of epistemic uncertainties comes from the
uncertainties on the mechanical parameters of the structure;

↪→ Our contribution: Adaptation of the UQ framework to earthquake
engineering.
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Proposed estimation framework
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Seismic fragility curve with epistemic uncer-
tainties

We propose a new definition of fragility curves encompassing mechanical parameters
uncertainties.

Ψ(a,X) = P (z(A,X) > C|A = a,X)

Ψ is a random seismic fragility curve, whose randomness comes from the mechanical
parameters uncertainties.

z is the stochastic model output. Its randomness comes from the seismic ground mo-
tion uncertainty.
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Proposed UQ framework
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Insightful quantities of interest

From the probability distribution of a→ Ψ(a,X), we can derive statistical quantities
of interest.

Classical quantity of interest: The mean seismic fragility curve

Ψ̄(a) = EX [Ψ(a,X)] ,

Our contribution: The seismic fragility quantile curves of level γ ∈ [0, 1]

qγ(a) = inf
q∈R

{
PX(Ψ(a,X) ≤ q) ≥ γ

}
.

These quantities are untractable to estimate directly using a mechanical computer
code⇒ Use of surrogate model.
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Outline of the defense

1 Uncertainty Quantification

2 Surrogate modeling of computer codes using Gaussian
processes

Seismic fragility curves estimation with Gaussian processes.
Uncertainty propagation
Application to a piping system of a French PWR

3 Global sensitivity analysis on seismic fragility curves

4 Sequential design of experiments

5 Conclusion and perspectives

15 / 57



Statistical model

A statistical model has to be proposed on the mechanical computer model output
z(a, x) :

y(a, x) = g(a, x) + ε(a, x) ,

where ε ∼ N (0, σ2
ε(a, x)) and y(a, x) = log(z(a, x)).

The seismic fragility model in this model boils down to

Ψ(a, x; g) = Φ

(
g(a, x)− log(C)

σε(a, x)

)
,

where Φ is the cdf of the standard Gaussian distribution.

↪→ Objective: Build a surrogate model to learn the regression function g.
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Surrogate model

Main principle→ Predict y(a, x) using a learning dataset (ai, xi, y(ai, xi))1≤i≤n.

A large variety of methods available in the literature (Polynomial chaos 6, random
forest, spline regression,...)

Gaussian process (GP) regression has the main advantage to propose an uncertainty
on its prediction.

6C. Soize and R. Ghanem. Physical systems with random uncertainties: Chaos representations with arbitrary probabil-
ity measure.

SIAM Journal on Scientific Computing, 26(2):395–410, 2004
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Gaussian process regression

The uncertainty on the regression function g is modeled by a Gaussian processG
with a mean functionm and a covariance function Σθ. The statistical model becomes

Y (a, x) = G(a, x) + ε(a, x) .

Given a learning setDn = (ai, xi, y(ai, xi))1≤i≤n, we can obtain the posterior distri-
bution

(G(a, x)|Dn) ∼ N (Ĝn(a, x), σ̂n(a, x)2) ,

↪→ A posterior distribution is obtained on the regression function g.
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(G(a, x)|Dn) ∼ N (Ĝn(a, x), σ̂n(a, x)2) ,

↪→ A posterior distribution is obtained on the regression function g.

18 / 57



Gaussian process regression

The uncertainty on the regression function g is modeled by a Gaussian processG
with a mean functionm and a covariance function Σθ. The statistical model becomes

Y (a, x) = G(a, x) + ε(a, x) .

Given a learning setDn = (ai, xi, y(ai, xi))1≤i≤n, we can obtain the posterior distri-
bution
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Seismic fragility curve estimator

Given a learning datasetDn, we can estimate the seismic fragility curve using the
posterior mean.

Ψ(1)(a, x) = EG [Ψ(a, x;G)|Dn] ,

Ψ(1)(a, x) = Φ

(
Ĝn(a, x)− log(C)

σn(a, x)

)
,

where σn(a, x)2 = σ̂n(a, x)2 + σε(a, x)2.

Ψ(1) is deterministic.
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Surrogate model uncertainty propagation

The advantage of the GP surrogate model is the possibility to propagate its uncer-
tainty on the seismic fragility curve

Ψ(2)(a, x) = Φ

(
Gn(a, x)− log(C)

σε(a, x)

)
,

whereGn
L
= (G|Dn).

Ψ(2) is random (due toGn).
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Seismic fragility quantile curve estimation

Plug-in estimator. Consider a Monte-Carlo sample (Xj)1≤j≤m.

q(1)
γ (a) = inf

q∈R

{ 1

m

m∑
j=1

1(Ψ(1)(a,Xj)≤q) ≥ γ
}
.

Bi-level seismic fragility quantile. Consider a sample (Ψ(2)
p )1≤p≤P of Ψ(2).

q(2)
γG

(a,X) = inf
q∈R

{ 1

P

P∑
p=1

1
(Ψ

(2)
p (a,X)≤q) ≥ γG

}
.

↪→ q(2)
γG

is a quantile w.r.t. the GP surrogate posterior distribution.

q(2)
γG,γ

(a) = inf
q∈R

{ 1

m

m∑
j=1

1
(q

(2)
γG

(a,Xj)≤q)
≥ γ

}
↪→ q(2)

γG,γ
is a bi-level seismic fragility quantile curve (GP uncertainty + epistemic

uncertainties).
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(a,X) = inf
q∈R

{ 1

P

P∑
p=1

1
(Ψ

(2)
p (a,X)≤q) ≥ γG

}
.

↪→ q(2)
γG

is a quantile w.r.t. the GP surrogate posterior distribution.

q(2)
γG,γ

(a) = inf
q∈R

{ 1

m

m∑
j=1

1
(q

(2)
γG

(a,Xj)≤q)
≥ γ

}
↪→ q(2)

γG,γ
is a bi-level seismic fragility quantile curve (GP uncertainty + epistemic

uncertainties).
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Industrial use case: ASG piping system

Figure: A view of the ASG
piping model on the Azalée
shaking table at CEA Saclay

Industrial use case: The Alimentation de Secours Générale
(ASG) piping system, equipping French nuclear power
plants.

CAST3M finite element code simulating the dynamic
behavior of the piping system validated on the basis of
experimental tests 7;

Ten structural parameters (Boundary conditions,
mechanical characteristics);

A quantity of interest for the reliability of the structure:
the out-of-plane rotation of a pipe elbow;

Computational cost of 1 CAST3M call≈ 1 minute⇒
100 days of computation time for uncertainty
propagation.

7F. Touboul, P. Sollogoub, and N. Blay. Seismic behaviour of piping systems with and without defects: experimental
and numerical evaluations.

Nuclear Engineering and Design, 192(2):243–260, 1999
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Sources of epistemic uncertainties

The epistemic uncertainties on the ASG piping system have two main sources:

↪→Material parameters: Young modulus, elasticity limit, hardening module and
modal damping ratio;

↪→ Boundary conditions: Translation and rotation stiffness at the clamped end
and in the guide.
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Structural parameters

Variable number Variable
1 E: Young modulus
2 Sy: Elasticity limit
3 H: Hardening module
4 b: Modal damping ratio
5 RPY151: Rotation stiffness for the P151 guide in Y direction
6 RPX29: Rotation stiffness for the P29 clamped end in X direction
7 RPY29: Rotation stiffness for the P29 clamped end in Y direction
8 TPX29: Translation stiffness for the P29 clamped end in X direction
9 TPY29: Translation stiffness for the P29 clamped end in Y direction
10 TPZ29: Translation stiffness for the P29 clamped end in Z direction

↪→Material parameters

↪→ Boundary conditions parameters
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ASG use case settings

The seismic intensity measure chosen is the spectral acceleration at pulsation
f = 5 Hz and damping ratio ξ = 0.01

a = max
t∈[0,T ]

(2πf)2|`(t)| ,

where ` is the displacement of a single d.o.f. oscillator;

A screening step using HSIC-based tests 8 is performed to select the 6 most
influential mechanical parameters, gathered in the vector X;

Synthetic ground motions are generated using a stochastic simulator 9 and
filtered by a one d.o.f oscillator modeling a fictitious building;

500 nonlinear mechanical simulations are carried out using CAST3M finite
element code.

8A. Marrel, B. Iooss, and V. Chabridon. The icscream methodology: Identification of penalizing configurations in com-
puter experiments using screening and metamodel—applications in thermal-hydraulics.

Nuclear Science and Engineering, 196(3):301–321, 2022
9S. Rezaeian and A. Der Kiureghian. Simulation of synthetic ground motions for specified earthquake and site charac-

teristics.
Earthquake Engineering & Structural Dynamics, 39(10):1155–1180, 2010
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Gaussian process surrogates

Two Gaussian processes are proposed as surrogates for the mechanical computer
code.

They are both zero mean with a tensorized anisotropic Matérn 5/2 covariance func-
tion.

↪→ Homoskedastic: σε(a, x) = σε ;

↪→ Heteroskedastic: σε(a, x) = max(β0 + β1a, β2) (Parametric model adapted
from Kyprioti and Taflanidis [2021]10).

Heteroskedastic model motivation→Mechanical nonlinearities for high intensity
seismic ground motions.

10A. P. Kyprioti and A. A. Taflanidis. Kriging metamodeling for seismic response distribution estimation.
Earthquake Engineering & Structural Dynamics, 50(13):3550–3576, 2021
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Performance evaluation

Learning sample size 100 200 300 400 500
Homoskedastic 0.844 0.860 0.853 0.870 0.867

Heteroskedastic 0.842 0.860 0.849 0.872 0.875

Table:Q2 numerical values estimated by leave-one-out.

↪→ Same predictive performance for the two models.
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Coverage probability

Credible intervals of level α ∈ [0, 1]

CIα(a, x) =
[
Ĝn(a, x)− q1−α2σn(a, x), Ĝn(a, x) + q1−α2σn(a, x)

]
,

qγ is the γ-level quantile of the standard Gaussian distribution. σn(a, x)2 = σ̂n(a, x)2+

σ2
ε .

Coverage probability of level α

CPα = P(y(A,X) ∈ CIα(A,X)) .

↪→ Similarity measure between the data distribution and the GP posterior distribu-
tion.

Empirical estimator on a test dataset (a′i, x
′
i, y(a′i, x

′
i))1≤i≤n′ or by cross-validation.

ĈPα =
1

n′

n′∑
i=1

1y(a′i,x
′
i)∈CIα(a′i,x

′
i)
.
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Performance evaluation
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Figure: Leave-one-out estimation of the coverage probabilities.

↪→ Better coverage probabilities with the heteroskedastic model.
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Uncertainty propagation
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n = 500 CAST3M computations
Plug-in quantile curve estimator (γ = 0.1 and γ = 0.9)
Bi-level quantile curves estimator (γ = γG = 0.1 and γ = γG = 0.9)
Nonparametric estimation of the mean curve (2000 CAST3M computations)
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Outline of the defense

1 Uncertainty Quantification

2 Surrogate modeling of computer codes using Gaussian
processes

3 Global sensitivity analysis on seismic fragility curves
Aggregated Sobol’ indices
Kernel methods
Application

4 Sequential design of experiments

5 Conclusion and perspectives
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Motivation

Sensitivity analysis (SA) aims at studying how the uncertainty on the model output
can be apportioned to the different uncertainties sources of the model inputs.

Global sensitivity analysis (GSA) takes into account the overall uncertainty of the
model inputs.

Model inputs→Mechanical parameters of the structure

Model output→ Seismic fragility curve
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Aggregated Sobol’ indices

The aggregated Sobol’ indices are a natural extension of Sobol’ indices to a functional
output 11.

Using the notation X = (X(1), . . . ,X(p))

D =

∫
A

Var(Ψ(a,X))dh(a)

SFC
i =

1

D

∫
A

Var
(
E[Ψ(a,X)|X(i)]

)
dh(a)

is the first-order aggregated Sobol’ index of X(i).

The probability measure h→ Choice of the practicioner.

11B. Iooss and L. Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes.
Reliability Engineering & System Safety, 187:58–66, 2019
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ANOVA decomposition

Our contribution: ANOVA decomposition of the aggregated Sobol’ indices.

Proposition
The aggregated Sobol’ indices follow a ANOVA decomposition∑

u⊆{1,...,p}

SFCu = 1 ,

where X(u) = (X(j))j∈u and
SFCu =

∑
v⊆u(−1)|u|−|v|

∫
AVar

(
E[Ψ(a,X)|X(v)]

)
dh(a).

↪→ The total-order aggregated Sobol’ indices are thus well-defined

T FCi = 1−
1

D

∫
A

Var
(
E[Ψ(a,X)|X(−i)]

)
dh(a) ,

where X(−i) = (X(j))j 6=i.
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Kernel methods

Recently, global sensitivity indices based on kernels have been proposed 12.

Theoretical guarantees→ ANOVA decomposition 13.

Motivation: Kernels methods are adapted to complex data types.

↪→ Definition of kernel based global sensitivity indices tailored for seismic fragility
curves.

12J. Barr and H. Rabitz. A generalized kernel method for global sensitivity analysis.
SIAM/ASA Journal on Uncertainty Quantification, 10(1):27–54, 2022

13S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis.
Society for Industrial and Applied Mathematics, 2021
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MMD distance

Consider a Reproducing Kernel Hilbert Space (RKHS)Hwith reproducing kernel
k : X × X 7→ R and dot product 〈·, ·〉H.

The kernel mean embeddingmµ ∈ H of a probability measure µ is defined by

mµ =

∫
X
k(x, ·)dµ(x) .

The Maximum Mean Discrepancy (MMD) distance between probability measures is
defined by

MMD(µ, ν) = ‖mµ −mν‖H .

Practical expression of the MMD 14

MMD2(µ, ν) = EU,U ′∼µ[k(U,U ′)] + EV,V ′∼ν[k(V, V ′)]− 2EU∼µ,V∼ν[k(U, V )] .

14A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723–773, 2012
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The Maximum Mean Discrepancy (MMD) distance between probability measures is
defined by

MMD(µ, ν) = ‖mµ −mν‖H .

Practical expression of the MMD 14

MMD2(µ, ν) = EU,U ′∼µ[k(U,U ′)] + EV,V ′∼ν[k(V, V ′)]− 2EU∼µ,V∼ν[k(U, V )] .

14A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723–773, 2012
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βk indices

The βk indices are generalized global sensitivity indices 15 defined using Maximum
Mean Discrepancy (MMD) distance.

The first-order βki and total-order βk−i indices of variable X(i) are defined by:

βki =
EX(i)

[
MMD2

(
PΨ, PΨ|X(i)

)]
MMD2

tot

,

βk−i = 1−
EX(−i)

[
MMD2

(
PΨ, PΨ|X(−i)

)]
MMD2

tot

,

MMD2
tot = E[k(Ψ(·,X),Ψ(·,X))]− EX,X′[k(Ψ(·,X),Ψ(·,X′))] .

↪→ ANOVA decomposition for the βk-indices 16.

15S. Da Veiga. Global sensitivity analysis with dependence measures.
Journal of Statistical Computation and Simulation, 85(7):1283–1305, 2015

16S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis.
Society for Industrial and Applied Mathematics, 2021
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Kriging-based estimation

A pick-freeze formulation 17 has been proposed to estimate the aggregated Sobol’ and
βk indices→ Large Monte-Carlo samples are needed.

GP surrogate model uncertainty propagated into the estimates→ Sampling GPs on
large set of evaluation points.

↪→ Adaptation of the kriging conditioning sampling method detailed in Le Gratiet
[2013]18 to noisy observations during the PhD.

17I.M. Sobol. Sensitivity estimates for non linear mathematical models.
Mathematical Modeling and Computer Experiments, 1:407–414, 1993

18L. Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments.
Phd thesis, Paris 7, January 2013
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Results on the ASG piping system

Global sensitivity analysis for 6 mechanical parameters of the structure

Variable name Description
E Young modulus
Sy Elasticity limit
H Hardening module

TPX29 Translation stiffness for the P29 clamped end in X direction
TPY29 Translation stiffness for the P29 clamped end in Y direction
TPZ29 Translation stiffness for the P29 clamped end in Z direction

↪→Material parameters

↪→ Boundary conditions parameters
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Results on the ASG piping system
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(b) Total order

↪→ Graphical representation of the posterior distribution of the aggregated Sobol’ in-
dices for the ASG piping system using 300 CAST3M computations.
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Results on the ASG piping system
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k(Ψ,Ψ′) = exp

(
−
‖Ψ−Ψ′‖2

L2
h(A)

2`2

)

↪→ Graphical representation of the posterior distribution of the βk indices for the
ASG piping system.
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Outline of the defense

1 Uncertainty Quantification

2 Surrogate modeling of computer codes using Gaussian
processes

3 Global sensitivity analysis on seismic fragility curves

4 Sequential design of experiments

5 Conclusion and perspectives
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Design of experiments

Goal: Improve the estimation accuracy of seismic fragility curves with a fixed budget
of evaluations of the computer code z(a, x).

↪→ Development of an importance sampling based active learning algorithm 19.

↪→ Proposition of a Stepwise Uncertainty Reduction (SUR) criterion 20 for seismic
fragility curves in the PhD.

19C. Gauchy, C. Feau, and J. Garnier. Importance sampling based active learning for parametric seismic fragility curve
estimation.

2021.
doi: 10.48550/ARXIV.2109.04323

20J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer experiments for the estima-
tion of a probability of failure.

Statistics and Computing, 22(3):773–793, 2012
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SUR sampling criterion

Given (Y |Dn) ∼ N (Ĝn(a, x), σ̂n(a, x)2) and define

Ψ̂n(a, x) = Φ

(
Ĝn(a, x)− log(C)

σ̂n(a, x)

)
.

The sequential procedure is defined by

ASUR
n+1 ,X

SUR
n+1 = argmin

a,x∈A×X
Jn(a, x) ,

where Jn is the SUR sampling criterion at step n defined by

Jn(a, x) = EG
[∫
A×X

(Ψ(α, u;G)− Ψ̂n+1(α, u))2dh(α)dPX(u)
∣∣∣An+1 = a,Xn+1 = x,Fn

]

Fn is the σ-algebra generated byDn.

↪→ Expression of Jn + Practical methods for its computation.
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Benchmark settings

10 randomly chosen realizations are used for initialization;

At step n,m = 1000 candidate points (Ai,Xi)1≤i≤m are subsampled in the
dataset of 2000 CAST3M computations. We define:

(ASUR
n+1 ,X

SUR
n+1 ) = argmin

1≤i≤m
Jn(Ai,Xi) .
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Performance metrics

A numerical benchmark is carried out to compare the performance of SUR strategy
and Monte-Carlo designs in terms of posterior variance:

vn = EG
[∫
A×X

(Ψ(α, u;G)− Ψ̂n(α, u))2dh(α)dPX(u)
∣∣∣Fn] ,

and in terms of bias using a reference fragility curve Ψref :

bn =

∫
A×X

(Ψref(α, u)− Ψ̂n(α, u))2dh(α)dPX(u) .

The integral is evaluated with a Monte-Carlo sample of size 5000 and the expectation
onG using 4000 realizations of the GP surrogate.
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Benchmark setting

The SUR strategy is compared to a Monte-Carlo design.

100 replications of Monte-Carlo designs for several training sizes are computed.

Due to the randomness induced in the SUR algorithm by choosing the candidate
points at each step, 100 runs of the SUR strategy are carried out using HPC.
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Performance assessment
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Outline of the defense

1 Uncertainty Quantification

2 Surrogate modeling of computer codes using Gaussian
processes

3 Global sensitivity analysis on seismic fragility curves

4 Sequential design of experiments

5 Conclusion and perspectives
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Contributions

Uncertainty Quantification framework development for earthquake engineering;

Estimators of seismic fragility curve based on GP surrogates;

Global sensitivity indices defined on seismic fragility curves;

Sequential design of experiments
↪→ Importance sampling based active learning (frequentist viewpoint)

↪→ SUR procedure (Bayesian viewpoint)
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Publications

C. Gauchy, C. Feau, and J. Garnier. Importance sampling based active learning for
parametric seismic fragility curve estimation.
2021.
doi: 10.48550/ARXIV.2109.04323

C. Gauchy, C. Feau, and J. Garnier. Uncertainty quantification and global sensitivity
analysis of seismic fragility curves using kriging.
2022a.
doi: 10.48550/ARXIV.2210.06266

C. Gauchy, C. Feau, and J. Garnier. Estimation of seismic fragility curves by sequen-
tial design of experiments.
In 52ème journées de Statistique de la Société Française de Statistique (JdS 2022), Lyon,
France, 2022b

51 / 57



Perspectives

Latent model for heteroskedastic GP regression 21;

Model selection (AIC, BIC, Bayes factor,...);

Bayesian methodology for seismic fragility curve estimation. Prior elicitation
using reference prior theory 22.

21A. Marrel, B. Iooss, S. Da Veiga, and M. Ribatet. Global sensitivity analysis of stochastic computer models with joint
metamodels.

Statistics and Computing, 22(3):833–847, 2012
22J. O. Berger, J. M. Bernardo, and D. Sun. The formal definition of reference priors.

The Annals of statistics, 37(2):905–938, 05 2009
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Thank you for your attention !

clgch.github.io

clgch.github.io
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ASG data
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ASG data
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Heteroskedastic noise
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SUR comparison
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Parametric estimation

Given data (Xi, Si)1≤i≤n where Si ∈ {0, 1} andXi = log(Ai). The fragility curve
ψ(x) is just

ψ(x) = E[S|X = x] .

Given a function space F = {ψθ, θ ∈ Θ}. The goal is to minimize

g(θ) = E[(ψ(X)− ψθ(X))2] .

In practice optimization is done on the following objective function

r(θ) = E[(S − ψθ(X))2] .

Empirical estimator:

R̂n(θ) =
1

n

n∑
i=1

(Si − ψθ(Xi))
2 .
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IS-AL principle

↪→ Importance sampling to reduce the variance of the empirical approximation of
r(θ).

R̂IS
n (θ) =

1

n

n∑
i=1

p(Xi)

q(Xi)
(Si − ψθ(Xi))

2 .

The instrumental density q is chosen to minimize the variance:∫
X

p2(x)

q(x)
˜̀2
θ(x)dx− r(θ)2 ,

where ˜̀2
θ(x) = E[(S − ψθ(X))4|X = x].
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IS-AL

Parametric family of lognormal seismic fragility curves: F = {Φ
(

log(IM/α)
β

)
, (α, β) ∈

Θ}

Penalization term Ω(θ) =
βreg
β

↪→ Importance sampling to reduce the variance of the empirical approximation of
r(θ).

R̂IA
n (θ) =

1

n

n∑
i=1

p(Xi)

qθ̂IAi−1,ε
(Xi)

(Si − ψθ(Xi))
2 +

βreg

nβ
,

θ̂IA
n = argmin

θ∈Θ
R̂IA
n (θ)
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Theoretical results

↪→ Consistency of θ̂IA
n . Let θ∗ = argminE[(ψ(X)− ψθ(X))2] ,

θ̂IA
n −−−−→n→+∞

θ∗ in probability.

↪→ Asymptotic normality of θ̂IA
n .

√
n(θ̂IA

n − θ∗)
D−→ N (0, G−1

θ∗,ε)

Proofs sketch: Combine convergence of martingal results (Hall et al. [2014]23) with
Z-estimation theory (Van der Vaart [1998]24)

23P. Hall, C.C. Heyde, Z.W. Birnbaum, and E. Lukacs. Martingale Limit Theory and Its Application.
Communication and Behavior. Elsevier Science, 2014

24A. W. Van der Vaart. Asymptotic Statistics.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998
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IS-AL interpretation
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Nonlinear single d.o.f. oscillator

m

(1− αy)mω
2

αymω
2

2ξmω

z(t)

z̈(t) + 2ξωż(t) + fNL(z(t)) = −s(t) ,

where fNL is a nonlinear restoring force.
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MLE versus IS-AL
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