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C2a  Seismic probabilistic risk assessment

Seismic probabilistic risk assessment (SPRA) is dedicated to estimating the safety of a
mechanical structure subjected to seismic ground motions and consists in three main
steps I:

W 1) Estimation of the probability measure A of annual occurence of a seismic

ground motion of intensity a € R*. < Probabilistic Seismic Hazard Analysis
(PSHA);

'Robert P. Kennedy. Risk based seismic design criteria.
Nuclear Engineering and Design, 1999
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Seismic probabilistic risk assessment (SPRA) is dedicated to estimating the safety of a
mechanical structure subjected to seismic ground motions and consists in three main
steps I:

W 1) Estimation of the probability measure A of annual occurence of a seismic

ground motion of intensity a € R*. < Probabilistic Seismic Hazard Analysis
(PSHA);

M 2) The estimation of the probability of failure ¢ (a) of a structure conditional to
the seismic intensity a. 1 is the seismic fragility curve;

M 3) The estimation of the annual probability of failure of the structure:

Py = /'c,b(a)d)\(a) .

— This thesis focuses on the second step.

'Robert P. Kennedy. Risk based seismic design criteria.
Nuclear Engineering and Design, 1999
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CLA  Seismic fragility curve

(a) = B(Z > C|A = a)
W Z: Mechanical demand of the structure, obtained using time-consuming
numerical simulations;
W C': Critical level for which the structure is considered in a failure state;

I A: Intensity measure of a seismic ground motion. Scalar value representing the
intensity of the temporal seismic signal.
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Cea Classical estimation framework

Geismic fragility curve\

Computer model of a structure

Mechanical parameters of the structure

x = (E,w,¢,...)

Failure probability

Intensity measure /
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Cea Expert judgement estimation

The first approach proposed in the 1980s for seismic fragility curves evaluation is
based on expert judgements °.

The seismic capacity A. is defined by

Ac — AmeReU ’

where A,, is the median capacity, eg and ey follow lognormal distributions with unit
median.

2R.P. Kennedy, C.A. Cornell, R.D. Campbell, S. Kaplan, and H.F. Perla. Probabilistic seismic safety study of an existing
nuclear power plant.
Nuclear Engineering and Design, 59(2):315 — 338, 1980
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The first approach proposed in the 1980s for seismic fragility curves evaluation is
based on expert judgements °.

The seismic capacity A. is defined by

Ac — AmeReU ’

where A,, is the median capacity, eg and ey follow lognormal distributions with unit
median.

er — Uncertainty from the seismic ground motions.
ey — Uncertainty coming from a lack of knowledge on the system.

Fragility curve evaluation

YP(a) =P(A. < a).

2R.P. Kennedy, C.A. Cornell, R.D. Campbell, S. Kaplan, and H.F. Perla. Probabilistic seismic safety study of an existing
nuclear power plant.
Nuclear Engineering and Design, 59(2):315 — 338, 1980
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Cea Motivation of the thesis

The sources of uncertainties are divided in two groups3.

3A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105-112, 2009
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W The aleatory uncertainties coming from the natural variability of physical
phenomena;

W The epistemic uncertainties coming from a lack of knowledge of the system
studied. They can be reduced in the short term (data gathering, experts
knowledge,...);

W This is a purely practical separation of uncertainties sources that is useful for
engineering studies;

B The effects of epistemic uncertainties in fragility analysis are usually assessed
using expert judgements.

Goal: Data-driven assessment of epistemic uncertainties on seismic fragility curves
using computer simulations — Uncertainty Quantification (UQ) methodology.

3A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105-112, 2009
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cea Outline of the defense

@ Uncertainty Quantification

@ Surrogate modeling of computer codes using Gaussian
process

© Global sensitivity analysis on seismic fragility curves
D Sequential design of experiments

@ Conclusion and perspectives
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cea Outline of the defense

d Uncertainty Quantification
e General framework
e Extension to earthquake engineering

COO ©
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Cea Uncertainty Quantification

UQ is an interdisciplinary framework aiming to assess the uncertainties tainting a
complex engineering system *. It has several objectives:

*E. De Rocquigny, N. Devictor, S. Tarantola, Y. Lefebvre, N. Pérot, W. Castaings, F. Mangeant, C. Schwob, R. Lavin, J.R.

Masse, P. Limbourg, W. Kanning, and PH.A.J.M. Gelder. Uncertainty in industrial practice: A guide to quantitative uncertainty
management.
Wiley, 2008
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UQ is an interdisciplinary framework aiming to assess the uncertainties tainting a
complex engineering system *. It has several objectives:

W Optimize the exploitation under costs and risks constraints;
W Estimate a regulatory criterion;
M Acquire a better knowledge of the system under study.

The computer model of the engineering system is modeled as a function M : RP —
R
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Cea Uncertainty Quantification®

[ Step C: Uncertainty Propagation ]

/ Step A: Problem specification
P P /Quantity of intereg
o(Y)
Input parameters Computer Model Model output s Mean. variance
, vari
L M Y = M(X) E[Y], Var[Y]
7y — Exceedance probability
\_ PY > O) J

L /

Step B: Uncertainty modeling

Input uncertainty modelization

[ Step C’: Sensitivity analysis ]

E. De Rocquigny, N. Devictor, S. Tarantola, Y. Lefebvre, N. Pérot, W. Castaings, F. Mangeant, C. Schwob, R. Lavin, J.R.

Masse, P. Limbourg, W. Kanning, and PH.A.J.M. Gelder. Uncertainty in industrial practice: A guide to quantitative uncertainty
management.
Wiley, 2008
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CZa  Extension to earthquake engineering

W The motivation of the thesis is to perform Uncertainty Quantification on the
seismic fragility curves;
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CZa  Extension to earthquake engineering

W The motivation of the thesis is to perform Uncertainty Quantification on the
seismic fragility curves;

W We consider that the source of epistemic uncertainties comes from the
uncertainties on the mechanical parameters of the structure;

B — Our contribution: Adaptation of the UQ framework to earthquake
engineering.
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Cea Proposed estimation framework

Geismic fragility curvg

Uncertain mechanical parameters

X ~ Px

_

/ Failure probability

Intensity measure /

/ Seismic ground motions\

Acce
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2% Seismic fragility curve with epistemic uncer-

tainties

We propose a new definition of fragility curves encompassing mechanical parameters
uncertainties.

¥(a,X) = P(2(A,X) > C|A = a,X)

¥ is a random seismic fragility curve, whose randomness comes from the mechanical
parameters uncertainties.

12 / 57



2% Seismic fragility curve with epistemic uncer-
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We propose a new definition of fragility curves encompassing mechanical parameters
uncertainties.

¥Y(a,X)=P(2(A,X) > C|A = a,X)

¥ is a random seismic fragility curve, whose randomness comes from the mechanical
parameters uncertainties.

z is the stochastic model output. Its randomness comes from the seismic ground mo-
tion uncertainty.
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Cea Proposed UQ framework

[ Uncertainty Propagation ]

/ Problem specification \

Mechanical parameters Computer model Stochastic model output Fragility curves
X ~ Px 2(A X) a — U(a,X)

\ /

Seismic ground motions Intensity measure
«'Ww"'" AeR

[ Sensitivity analysis ]
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Cea Insightful quantities of interest

From the probability distribution of a — ¥(a, X), we can derive statistical quantities
of interest.
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From the probability distribution of a — ¥(a, X), we can derive statistical quantities
of interest.

W Classical quantity of interest: The mean seismic fragility curve

¥(a) = Ex [¥(a,X)] ,

W Our contribution: The seismic fragility quantile curves of level v € [0, 1]

qy(a) = (illélﬂg {Px(\IJ(a, X) < q) > 7} _

These quantities are untractable to estimate directly using a mechanical computer
code = Use of surrogate model.

14 / 57



Cea Outline of the defense

J

@ Surrogate modeling of computer codes using Gaussian
processes

m Seismic fragility curves estimation with Gaussian processes.

m Uncertainty propagation
m Application to a piping system of a French PWR

VR S
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cea Statistical model

A statistical model has to be proposed on the mechanical computer model output
z(a,x) :

y(a,x) = g(a,x) +¢(a,x),

where e ~ N (0, 02(a,x)) and y(a, x) = log(z(a,x)).
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A statistical model has to be proposed on the mechanical computer model output
z(a,x) :

y(a,x) = g(a,x) +¢(a,x),

where e ~ N (0, 02(a,x)) and y(a, x) = log(z(a,x)).

The seismic fragility model in this model boils down to

g(a,x) — log(C)) ,

o.(a,x)

¥(a,xig) = (
where @ is the cdf of the standard Gaussian distribution.

— Objective: Build a surrogate model to learn the regression function g.
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Cea Surrogate model

Main principle — Predict y(a, x) using a learning dataset (a;, x;, y(@i, X;))1<i<n-

6C. Soize and R. Ghanem. Physical systems with random uncertainties: Chaos representations with arbitrary probabil-
ity measure.
SIAM Journal on Scientific Computing, 26(2):395-410, 2004
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Cea Surrogate model

Main principle — Predict y(a, x) using a learning dataset (a;, x;, y(@i, X;))1<i<n-

A large variety of methods available in the literature (Polynomial chaos ¢, random
forest, spline regression,...)

Gaussian process (GP) regression has the main advantage to propose an uncertainty
on its prediction.

6C. Soize and R. Ghanem. Physical systems with random uncertainties: Chaos representations with arbitrary probabil-
ity measure.
SIAM Journal on Scientific Computing, 26(2):395-410, 2004
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CLa  Gaussian process regression

The uncertainty on the regression function g is modeled by a Gaussian process G
with a mean function m and a covariance function 4. The statistical model becomes

Y (a,x) = G(a,x) + €(a, x) .
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Y (a,x) = G(a,x) + e(a,x) .

Given a learning set D,, = (ai, X;, y(ai, X;))1<i<n, We can obtain the posterior distri-
bution

(G(a,;x)|Dy) ~ N(@n(aa x), on(a, X)z) )

— A posterior distribution is obtained on the regression function g.
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CLa  Seismic fragility curve estimator

Given a learning dataset D,,, we can estimate the seismic fragility curve using the
posterior mean.
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CLa  Seismic fragility curve estimator

Given a learning dataset D,,, we can estimate the seismic fragility curve using the
posterior mean.

D (q. x) — én(a, X) — log(C’)>
¥(ax) = o (09 0O

where o,(a,x)? = 6,(a,x)? + o.(a,x)2

(1) is deterministic.
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Cea Surrogate model uncertainty propagation

The advantage of the GP surrogate model is the possibility to propagate its uncer-
tainty on the seismic fragility curve

T (a.x) — @ (Gn(a, x) — log(C)) |

o.(a,x)

where G,, £ (G|Dy,,).
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Cea Surrogate model uncertainty propagation

The advantage of the GP surrogate model is the possibility to propagate its uncer-
tainty on the seismic fragility curve

T (a.x) — @ (Gn(a, x) — log(C)) |

o.(a,x)

where G,, £ (G|Dy,,).

¥ ijs random (due to G,,).
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CLa  Seismic fragility quantile curve estimation

W Plug-in estimator. Consider a Monte-Carlo sample (X;)1<j<m.

S R
¢} (a) = inf {g > Lawax)<g 2 ’Y} '
j=1
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j=1

W Bi-level seismic fragility quantile. Consider a sample (¥{?),<,<p of ¥
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1
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W Plug-in estimator. Consider a Monte-Carlo sample (X;)1<j<m.

: 1 &
¢\)(a) = }12]12 {g ) Lomax;<q 2 ’Y} '
j=1

W Bi-level seismic fragility quantile. Consider a sample (¥{?),<,<p of ¥

P
1
(2) — _
4y (a,X) = ;QIE {P Z ]l(‘I’I(;z)(a,X)SQ) 2 7G} )
p=1

— g% is a quantile w.r.t. the GP surrogate posterior distribution.
gle

— q%)’ , is a bi-level seismic fragility quantile curve (GP uncertainty + epistemic
uncertainties).
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Industrial use case: ASG piping system

Industrial use case: The Alimentation de Secours Générale
(ASG) piping system, equipping French nuclear power
plants.

= [ £

Figure: A view of the AS
piping model on the Azalée
shaking table at CEA Saclay

’F. Touboul, P. Sollogoub, and N. Blay. Seismic behaviour of piping systems with and without defects: experimental
and numerical evaluations.
Nuclear Engineering and Design, 192(2):243-260, 1999
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plants.

W CAST3M finite element code simulating the dynamic
behavior of the piping system validated on the basis of
experimental tests ’;

W Ten structural parameters (Boundary conditions,
mechanical characteristics);

Figure: A view of the AS W A quantity of interest for the reliability of the structure:
piping model on the Azalée

shaking table at CEA Saclay the out-of-plane rotation of a pipe elbow;
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Industrial use case: The Alimentation de Secours Générale
(ASG) piping system, equipping French nuclear power
plants.

W CAST3M finite element code simulating the dynamic
behavior of the piping system validated on the basis of
experimental tests ’;

W Ten structural parameters (Boundary conditions,
mechanical characteristics);

Figure: A view of the AS W A quantity of interest for the reliability of the structure:
piping model on the Azalée

shaking table at CEA Saclay the out-of-plane rotation of a pipe elbow;

B Computational cost of 1 CAST3M call =~ 1 minute =
100 days of computation time for uncertainty
propagation.

’F. Touboul, P. Sollogoub, and N. Blay. Seismic behaviour of piping systems with and without defects: experimental
and numerical evaluations.
Nuclear Engineering and Design, 192(2):243-260, 1999
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CZa  Sources of epistemic uncertainties

The epistemic uncertainties on the ASG piping system have two main sources:
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CZa  Sources of epistemic uncertainties

The epistemic uncertainties on the ASG piping system have two main sources:

W — Material parameters: Young modulus, elasticity limit, hardening module and
modal damping ratio;

W — Boundary conditions: Translation and rotation stiffness at the clamped end
and in the guide.

23 /57



CLa  Structural parameters

Variable number Variable
1 E: Young modulus
2 Sy: Elasticity limit
3 H: Hardening module
4 b: Modal damping ratio
5 RPY151: Rotation stiffness for the P151 guide in Y direction
6 RPX29: Rotation stiffness for the P29 clamped end in X direction
7 RPY?29: Rotation stiffness for the P29 clamped end in Y direction
8 TPX29: Translation stiffness for the P29 clamped end in X direction
9 TPY29: Translation stiffness for the P29 clamped end in Y direction
10 TPZ29: Translation stiffness for the P29 clamped end in Z direction

— Material parameters

— Boundary conditions parameters

24 / 57



Ca  ASG use case settings

W The seismic intensity measure chosen is the spectral acceleration at pulsation
f = 5 Hz and damping ratio £ = 0.01

= 27 f)?
a féf&%( wf)°e(t)] ,

where £ is the displacement of a single d.o.f. oscillator;

8A. Marrel, B. Iooss, and V. Chabridon. The icscream methodology: Identification of penalizing configurations in com-
puter experiments using screening and metamodel—applications in thermal-hydraulics.
Nuclear Science and Engineering, 196(3):301-321, 2022

?S. Rezaeian and A. Der Kiureghian. Simulation of synthetic ground motions for specified earthquake and site charac-
teristics.
Earthquake Engineering & Structural Dynamics, 39(10):1155-1180, 2010
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— 9 2
a féf&%( wf)°e(t)] ,

where £ is the displacement of a single d.o.f. oscillator;

W A screening step using HSIC-based tests ® is performed to select the 6 most
influential mechanical parameters, gathered in the vector X;

8A. Marrel, B. Iooss, and V. Chabridon. The icscream methodology: Identification of penalizing configurations in com-
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where £ is the displacement of a single d.o.f. oscillator;

W A screening step using HSIC-based tests ® is performed to select the 6 most
influential mechanical parameters, gathered in the vector X;

W Synthetic ground motions are generated using a stochastic simulator ? and
filtered by a one d.o.f oscillator modeling a fictitious building;

W 500 nonlinear mechanical simulations are carried out using CAST3M finite
element code.
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C2a  Gaussian process surrogates

Two Gaussian processes are proposed as surrogates for the mechanical computer
code.

They are both zero mean with a tensorized anisotropic Matérn 5/2 covariance func-
tion.

VA, P. Kyprioti and A. A. Taflanidis. Kriging metamodeling for seismic response distribution estimation.
Earthquake Engineering & Structural Dynamics, 50(13):3550-3576, 2021
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code.

They are both zero mean with a tensorized anisotropic Matérn 5/2 covariance func-
tion.

W — Homoskedastic: o.(a,x) = o ;

W — Heteroskedastic: oc(a,x) = max(8y + B1a, B2) (Parametric model adapted
from Kyprioti and Taflanidis [2021]7).

Heteroskedastic model motivation — Mechanical nonlinearities for high intensity
seismic ground motions.

A, P. Kyprioti and A. A. Taflanidis. Kriging metamodeling for seismic response distribution estimation.
Earthquake Engineering & Structural Dynamics, 50(13):3550-3576, 2021
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Performance evaluation

Learning sample size| 100 | 200 | 300 | 400 | 500
Homoskedastic | 0.844 | 0.860 | 0.853 | 0.870 | 0.867
Heteroskedastic | 0.842 | 0.860 | 0.849 | 0.872 | 0.875

Table: Q% numerical values estimated by leave-one-out.
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Table: Q% numerical values estimated by leave-one-out.

— Same predictive performance for the two models.
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Cea Coverage probability

Credible intervals of level a € [0, 1]

CIa(a7 X) — [én(aa X) — ql—%an(a7 X)? C/\;'n(a'a X) + Q1—%0'n(a/7 X) ’

q- is the y-level quantile of the standard Gaussian distribution. o, (a, x)? = o,(a, x)*+
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CIa(a7 X) — [én(aa X) — ql—%an(a7 X)? C/\;'n(a'a X) + Q1—%0'n(a/7 X) ’

q- is the y-level quantile of the standard Gaussian distribution. o, (a, x)? = o,(a, x)*+

2

o..

Coverage probability of level o

CP, = P(y(A,X) € CI,(A,X)).

— Similarity measure between the data distribution and the GP posterior distribu-
tion.

Empirical estimator on a test dataset (a, x’, y(a;, X.))1<i<n’ Or by cross-validation.

1"
CPO‘ - ]ly(agaxé)GCIa(a{aXfi) '

/ 1
n 1=1
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Cea Performance evaluation
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Figure: Leave-one-out estimation of the coverage probabilities.
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Figure: Leave-one-out estimation of the coverage probabilities.

— Better coverage probabilities with the heteroskedastic model.
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Uncertainty propagation

Heteroskedastic Homoskedastic
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W n = 500 CAST3M computations

B Plug-in quantile curve estimator (v = 0.1 and v = 0.9)

B Bi-level quantile curves estimator (v = ¢ = 0.1 and v = vg = 0.9)

B Nonparametric estimation of the mean curve (2000 CAST3M computations)

30 /57



cea Outline of the defense

J
I

© Global sensitivity analysis on seismic fragility curves

m Aggregated Sobol” indices

m Kernel methods
m Application
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cea Motivation

Sensitivity analysis (SA) aims at studying how the uncertainty on the model output
can be apportioned to the different uncertainties sources of the model inputs.
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Ccea Motivation

Sensitivity analysis (SA) aims at studying how the uncertainty on the model output
can be apportioned to the different uncertainties sources of the model inputs.

Global sensitivity analysis (GSA) takes into account the overall uncertainty of the
model inputs.

Model inputs — Mechanical parameters of the structure

Model output — Seismic fragility curve
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Cea Aggregated Sobol” indices

The aggregated Sobol” indices are a natural extension of Sobol” indices to a functional
output M.

1B, Tooss and L. Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes.
Reliability Engineering & System Safety, 187:58-66, 2019
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Cea Aggregated Sobol” indices

The aggregated Sobol” indices are a natural extension of Sobol” indices to a functional
output M.

Using the notation X = (X1, ..., X))

D= /A Var (¥ (a, X))dh(a)

SFC = % /A Var (E[\I!(a, X)|X<i>]) dh(a)

is the first-order aggregated Sobol” index of X ().

The probability measure h — Choice of the practicioner.

1B, Tooss and L. Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes.
Reliability Engineering & System Safety, 187:58-66, 2019



Ca  ANova decomposition

Our contribution: ANOVA decomposition of the aggregated Sobol” indices.

Proposition
The aggregated Sobol” indices follow a ANOVA decomposition

Y sreo,
uC{1,...,p}

where X = (X)) ¢, and
Sp ¢ = Dpcu (1) [ Var (E[®(a, X)|X™)]) dh(a).
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Our contribution: ANOVA decomposition of the aggregated Sobol” indices.

Proposition
The aggregated Sobol” indices follow a ANOVA decomposition

IRCLEES
uC{1,...,p}

where X = (X)) ¢, and
SFC — Z:vgu(—l)“"_'”| J 4 Var (E[\Il(a, X)|X(”)]) dh(a).

— The total-order aggregated Sobol” indices are thus well-defined

2

TFC =1 — % / Var (E[\I!(a, X)|X(_i)]) dh(a) ,
A

where X (=9 = (X)), .
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Cea Kernel methods

Recently, global sensitivity indices based on kernels have been proposed 2.

121, Barr and H. Rabitz. A generalized kernel method for global sensitivity analysis.
SIAM/ASA Journal on Uncertainty Quantification, 10(1):27-54, 2022

135, Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis.
Society for Industrial and Applied Mathematics, 2021
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Cea Kernel methods

Recently, global sensitivity indices based on kernels have been proposed 2.

Theoretical guarantees — ANOVA decomposition °.
Motivation: Kernels methods are adapted to complex data types.

— Definition of kernel based global sensitivity indices tailored for seismic fragility
curves.

121, Barr and H. Rabitz. A generalized kernel method for global sensitivity analysis.
SIAM/ASA Journal on Uncertainty Quantification, 10(1):27-54, 2022

135, Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis.
Society for Industrial and Applied Mathematics, 2021
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Cea MMD distance

Consider a Reproducing Kernel Hilbert Space (RKHS) ‘H with reproducing kernel
k : X X X — Rand dot product (-, -).

The kernel mean embedding m,, € H of a probability measure p is defined by

my = | k(x,)du(x).

14A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723-773, 2012
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Consider a Reproducing Kernel Hilbert Space (RKHS) ‘H with reproducing kernel
k : X X X — Rand dot product (-, +).

The kernel mean embedding m,, € H of a probability measure u is defined by
mu = [ k0x )

The Maximum Mean Discrepancy (MMD) distance between probability measures is
defined by

MMD (p, v) = [|m,, — m, |l -

Practical expression of the MMD

MMD2(N9 V) — EU,U’Nu [k(Ua U/)] + ]EV,V’NV [k(va V/)] — 2Ey~p,ver [k(Ua V)] .

14A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schilkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(25):723-773, 2012
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Cea 3% indices

The 3* indices are generalized global sensitivity indices !°> defined using Maximum
Mean Discrepancy (MMD) distance.

156, Da Veiga. Global sensitivity analysis with dependence measures.
Journal of Statistical Computation and Simulation, 85(7):1283-1305, 2015

165 Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis.
Society for Industrial and Applied Mathematics, 2021
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Cea 3% indices

The 3* indices are generalized global sensitivity indices !°> defined using Maximum
Mean Discrepancy (MMD) distance.

The first-order 3 and total-order 8% ; indices of variable X are defined by:

Ex) |MMD? (Py, Py )|

o MMD?2 ’

tot

Ex - [MMDQ (]P)‘IM mex(—i))]
MMD?2 ’

tot

MMDy, = E[k(¥(-, X), ¥ (-, X))] — Exx/[k(2 (-, X), ¥(-, X))] .

< ANOVA decomposition for the 3*-indices '°.

156, Da Veiga. Global sensitivity analysis with dependence measures.
Journal of Statistical Computation and Simulation, 85(7):1283-1305, 2015

165 Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis.
Society for Industrial and Applied Mathematics, 2021
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Cea Kriging-based estimation

A pick-freeze formulation '7 has been proposed to estimate the aggregated Sobol” and
B* indices — Large Monte-Carlo samples are needed.

171 M. Sobol. Sensitivity estimates for non linear mathematical models.
Mathematical Modeling and Computer Experiments, 1:407-414, 1993

181.. Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments.
Phd thesis, Paris 7, January 2013
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Cea Kriging-based estimation

A pick-freeze formulation '7 has been proposed to estimate the aggregated Sobol” and
B* indices — Large Monte-Carlo samples are needed.

GP surrogate model uncertainty propagated into the estimates — Sampling GPs on
large set of evaluation points.

— Adaptation of the kriging conditioning sampling method detailed in Le Gratiet
[2013]'8 to noisy observations during the PhD.

171 M. Sobol. Sensitivity estimates for non linear mathematical models.
Mathematical Modeling and Computer Experiments, 1:407-414, 1993

181.. Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments.
Phd thesis, Paris 7, January 2013
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CZA  Results on the ASG piping system

Global sensitivity analysis for 6 mechanical parameters of the structure

Variable name Description
E Young modulus
Sy Elasticity limit
H Hardening module
TPX29 Translation stiffness for the P29 clamped end in X direction
TPY29 Translation stiffness for the P29 clamped end in Y direction
TPZ29 Translation stiffness for the P29 clamped end in Z direction

— Material parameters

— Boundary conditions parameters
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cea

Results on the ASG piping system
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— Graphical representation of the posterior distribution of the aggregated Sobol” in-
dices for the ASG piping system using 300 CAST3M computations.
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< Graphical representation of the posterior distribution of the 8* indices for the
ASG piping system.

41 / 57



cea Outline of the defense

Sequential design of experiments

OC0L L©

42 / 57



Cea Design of experiments

Goal: Improve the estimation accuracy of seismic fragility curves with a fixed budget
of evaluations of the computer code z(a, x).

YC. Gauchy, C. Feau, and J. Garnier. Importance sampling based active learning for parametric seismic fragility curve
estimation.
2021.
doi: 10.48550/ ARXIV.2109.04323

27 Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer experiments for the estima-
tion of a probability of failure.
Statistics and Computing, 22(3):773-793, 2012
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Cea Design of experiments

Goal: Improve the estimation accuracy of seismic fragility curves with a fixed budget
of evaluations of the computer code z(a, x).

< Development of an importance sampling based active learning algorithm °.

< Proposition of a Stepwise Uncertainty Reduction (SUR) criterion % for seismic
fragility curves in the PhD.

YC. Gauchy, C. Feau, and J. Garnier. Importance sampling based active learning for parametric seismic fragility curve
estimation.
2021.
doi: 10.48550/ ARXIV.2109.04323

27 Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer experiments for the estima-
tion of a probability of failure.
Statistics and Computing, 22(3):773-793, 2012
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Ca  sur sampling criterion

Given (Y|D,) ~ N (G,(a,x), 5, (a,x)?) and define

én(a, X) — log(C)> .

on(a,x)

U, (a,x) = P (

The sequential procedure is defined by

SUR ~SUR
A X

RO, G argmin J,(a, x) ,

a,XxEAXX

where J, is the SUR sampling criterion at step n defined by

Jn(a,x) = Eg [/A (T(a,u; G) — U1 (x, u))zdh(a)dIPX(u)‘AnH =a,Xp11 =X, F,
XX

Fn is the o-algebra generated by D,,.
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Given (Y|D,) ~ N (G,(a,x), 5, (a,x)?) and define

én(a, X) — log(C)> .

on(a,x)

U, (a,x) = P (

The sequential procedure is defined by

SUR ~SUR __ :
ACST, XL = argmin Jy(a, x) ,
a,XxEAXX

where J, is the SUR sampling criterion at step n defined by

Jn(a,x) = Eg [/ (T(a,u; G) — U1 (x, u))zdh(a)dIPX(u)‘AnH =a,Xp11 =X, F,
AxX

Fn is the o-algebra generated by D,,.

— Expression of J,, + Practical methods for its computation.
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CZa  Benchmark settings

W 10 randomly chosen realizations are used for initialization;
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CZa  Benchmark settings

W 10 randomly chosen realizations are used for initialization;

W At step n, m = 1000 candidate points (A;, X;)1<i<m are subsampled in the
dataset of 2000 CAST3M computations. We define:

(A,,Sllff, Xitilf) = argmin J,(A4;, X;) .
1<i<m
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Cla Performance metrics

A numerical benchmark is carried out to compare the performance of SUR strategy
and Monte-Carlo designs in terms of posterior variance:

v, = Eg [/AXX(\II(a,u; G) — \Tln(a,u))2dh(a)dIPX(u)‘.7-'n] ,
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Cla Performance metrics

A numerical benchmark is carried out to compare the performance of SUR strategy
and Monte-Carlo designs in terms of posterior variance:

v, = Eg [/ (Y(a,u; G) — \i'n(a,u))2dh(a)dIP’X(u)‘.7-_n] ,
AxXX
and in terms of bias using a reference fragility curve W ¢:

b, = Axx(qlref(a, u) — U, (a, u))?dh(a)dPx(u) .

The integral is evaluated with a Monte-Carlo sample of size 5000 and the expectation
on G using 4000 realizations of the GP” surrogate.
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CZ2a  Benchmark setting

The SUR strategy is compared to a Monte-Carlo design.
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C2a  Benchmark setting

The SUR strategy is compared to a Monte-Carlo design.
100 replications of Monte-Carlo designs for several training sizes are computed.

Due to the randomness induced in the SUR algorithm by choosing the candidate
points at each step, 100 runs of the SUR strategy are carried out using HPC.

47 / 57



Cla Performance assessment
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cea Outline of the defense

Q0L ©©

Conclusion and perspectives
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cea Contributions

W Uncertainty Quantification framework development for earthquake engineering;
W Estimators of seismic fragility curve based on GP surrogates;

W Global sensitivity indices defined on seismic fragility curves;

M Sequential design of experiments
— Importance sampling based active learning (frequentist viewpoint)

< SUR procedure (Bayesian viewpoint)
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Ca Publications

C. Gauchy, C. Feau, and J. Garnier. Importance sampling based active learning for
parametric seismic fragility curve estimation.

2021.

doi: 10.48550/ ARXIV.2109.04323

C. Gauchy, C. Feau, and J. Garnier. Uncertainty quantification and global sensitivity
analysis of seismic fragility curves using kriging.

2022a.

doi: 10.48550/ ARXIV.2210.06266

C. Gauchy, C. Feau, and J. Garnier. Estimation of seismic fragility curves by sequen-
tial design of experiments.

In 52éme journées de Statistique de la Société Frangaise de Statistique (JdS 2022), Lyon,
France, 2022b
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Cea Perspectives

W Latent model for heteroskedastic GP regression %!;
W Model selection (AIC, BIC, Bayes factor,...);

M Bayesian methodology for seismic fragility curve estimation. Prior elicitation
using reference prior theory .

2L A. Marrel, B. Iooss, S. Da Veiga, and M. Ribatet. Global sensitivity analysis of stochastic computer models with joint
metamodels.
Statistics and Computing, 22(3):833-847, 2012

221, O. Berger, ]. M. Bernardo, and D. Sun. The formal definition of reference priors.
The Annals of statistics, 37(2):905-938, 05 2009
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Thank you for your attention !
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Heteroskedastic noise
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Cla Parametric estimation

Given data (X, S;)1<i<n Where S; € {0,1} and X; = log(A;). The fragility curve
P (x) is just

P(z) = E[S|X = =]
Given a function space F = {19, 8 € ©O}. The goal is to minimize
g9(0) = E[(¥(X) — 4(X))7] .
In practice optimization is done on the following objective function
r(0) = E[(S — (X)) .

Empirical estimator:

Ra(0) = — 3 (8i — o(X0)* -

=1
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CEa  1s-AL principle

— Importance sampling to reduce the variance of the empirical approximation of
r(0).

RE(0) = %Z 28((1; (Si — a(X3))* .

The instrumental density g is chosen to minimize the variance:

p2(m) =2 2
/X a(@) Ly(x)dxe — r(0)°,

where £2(x) = E[(S — 9(X))*| X = x].
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Parametric family of lognormal seismic fragility curves: F = {® (M) (a, B) €
©}

,Breg

Penalization term €2(0) = :

— Importance sampling to reduce the variance of the empirical approximation of
r(0).

~TA . l n p(X) . IBreg
R} (0)_71;%3& (X)(S ¥o(Xi))* + "3’

é\,,IzA = argmin }?LA(H)
0co
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Ca Theoretical results

< Consistency of 8. Let 0, = argmin E[(¢(X) — ¢g(X))?],

éTA

n

P 0. in probability.

é\IA

n *

— Asymptotic normality of

Vn(8* —6,) 2 N(0,G;L)

Proofs sketch: Combine convergence of martingal results (Hall et al. [2014]%) with
Z-estimation theory (Van der Vaart [1998]%)

2P, Hall, C.C. Heyde, Z.W. Birnbaum, and E. Lukacs. Martingale Limit Theory and Its Application.
Communication and Behavior. Elsevier Science, 2014

2A. W. Van der Vaart. Asymptotic Statistics.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998
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cea

IS-AL interpretation
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CZ4a  Nonlinear single d.o.f. oscillator

22 (1 — o) mw?
., muw?
2Emw ) )

£(t) + 26wz(t) + FH(2(1) = —s(t)

where fN is a nonlinear restoring force.
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MLE versus IS-AL
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