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Seismic hazard

Izmir seism picture (from newspaper Le Dauphiné, November 1st 2020)

Seisms have a huge social & human costs and are unfortunately random.

Dramatic effect on mechanical structures.
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Seismic hazard

Crucial need of seismic risk assesment for valuable industrial assets (e.g. nuclear power plant)

Nuclear power plant of Nogent sur Seine, France



Context: Seismic probabilistic risk assessment

Seismic probabilistic risk assessment (SPRA) is dedicated in estimating the safety of a mechanical struc-
ture subjected to seismic ground motions and consists in three main steps1:

Seismic hazard probability distribution on a given site: dh(a) = p(a)dµ

Seismic fragility curve estimation Ψ(a) = P(Y > C|A = a). By definition the conditional probability
of failure of the structure given a seismic intensity of level A = a.

Our QoI: Final probability of failure:

Υ =

∫
Ψ(a)dh(a)

1Robert P. Kennedy. Risk based seismic design criteria.
Nuclear Engineering and Design, 1999



Industrial motivations

Uncertainties are divided in two groups:

Aleatory : Natural variability of a physical phenomenon.

Epistemic: Comes from the Greek word επιστηµη (knowledge). Uncertainties resulting from a lack of knowledge

This division is purely subjective2.

For SPRA in the nuclear industry, epistemic uncertainties are the mechanical parameters of the
structure (natural frequency, damping ratio,...) Aleatory uncertainties comes from the seismic
ground motions’ stochasticity.

2Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 2009.
ISSN 0167-4730.
Risk Acceptance and Risk Communication
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Fragility curve with epistemic uncertainties

Our goal is to assess the effect of mechanical model parameters uncertainties (e.g. epis-
temic uncertainties) on the QoI.

For X a random vector of model parameters, Ψ(a,X) = P(Y > C|A = a, X)

The random function Ψ(., X) could be seen as a functional QoI.

Scalar quantities derived from Ψ(., X) could also been used such as:

Υ(X) =

∫
Ψ(a,X)dh(a)



Fragility curve estimation

Fragility curves are estimated by Gaussian Process regression3 :

log(Y ) = β0 + β1 log(A) + Z(A,X) + ε ,

where Z a centered Gaussian Process with Matèrn 5/2 kernel and ε ∼ N (0, σ2).

Kernel hyperparameters and σ are fitted by maximum likelihood.

Given a dataset Dn = (Ai, Xi, Yi)1≤i≤n, the predictive distribution is

(log(Y (a,X))|Dn) ∼ N
(
̂log(Y )(a,X), σ̂(a,X)2

)
.

Ψ̂(a,X) = P(Y > C|A = a,X) = Φ

(
̂log(Y )(a,X)− log(C)

σ̂(a,X)

)

3Bertrand Iooss and Löıc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on gaussian processes.
Reliability Engineering & System Safety, 187:58–66, 2019



Global Sensitivity Analysis framework

In order to study the influence of the uncertainties of the model parameters X = (X1, ..., Xp) on the
scalar QoI Υ(X) =

∫
Ψ(a,X)dh(a), we recall the general formulation of sensitivity indices for parameter

X i 4:

Si = EXi[d(PΥ,PΥ|Xi)] ,

d(., .) is a dissimilarity between probability measures. Recall that Sobol indices are obtained with

d(PΥ,PΥ|Xi) = (E[Υ]− E[Υ|X i])2

Moreover, aggregated Sobol indices are defined naturally as:

Si =
E[‖Ψ̄−ΨXi‖2

L2]

E[‖Ψ̄−ΨX‖2
L2]

,

with Ψ̄ = E[Ψ(., X)] and ΨXi = E[Ψ(., X)|X i].

4Sebastien Da Veiga. Global sensitivity analysis with dependence measures.
Journal of Statistical Computation and Simulation, 2015



MMD-based sensitivity indices

Recently the squared Maximum Mean Discrepancy (MMD) distance has been investigated 5:

MMD2(P1,P2) = Eξ,ξ′∼P1
[k(ξ, ξ′)]− 2Eξ,ζ∼P1×P2

[k(ξ, ζ)] + Eζ,ζ ′∼P2
[k(ζ, ζ ′)]

Given a kernel k(., .), MMD based sensitivity indices are easily expressed using expectations:

SMMD
i = EXi[EZ,Z̃∼PΥ|Xi

[k(Z, Z̃)]]− EZ,Z̃∼PΥ
[k(Z, Z̃)]

Pick freeze estimation of SMMD
i and an ANOVA decomposition is proposed in the same reference.

5Sébastien da Veiga. Kernel-based anova decomposition and shapley effects – application to global sensitivity analysis, 2021.
arXiv: 2101.05487



Interpretation of the MMD sensitivity indices

We use a theoretical result on the MMD distance to raise an interpretation of the MMD based sensitivity
indices 6

Lemma
Given k(x, y) = (Φ ∗ Φ)(x− y) with Φ ∈ L1(R). Then,

SMMD
i = (2π)−1/4EXi

[
‖Φ ∗ PΥ − Φ ∗ PΥ|Xi‖2

L2(R)

]

Define Φγ(x) = 1
γΦ
(
x
γ

)
with

∫
Φ(x)dx = 1. Using the lemma above, we raise that:

SMMD
i −−→

γ→0
(2π)−1/4EXi

[
‖pΥ − pΥ|Xi‖2

L2(R)

]

where dPΥ = pΥdµ and dPΥ|Xi = pΥ|Xidµ.

6Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R.G. Lanckriet. Hilbert space embeddings and
metrics on probability measures.

Journal of Machine Learning Research, 2010



Empirical bandwidth parameter selection

Considering an empirical measure P̂Υ = 1
n

∑
δΥi

:

(Φγ ∗ P̂Υ)(y) =
1

nγ

n∑

i=1

Φ

(
y −Υi

γ

)

Empirical MMD based sensitivity indices are the mean of the squared L2 norm between
kernel density estimators (KDE) estimators of PΥ and PΥ|Xi.

We propose to choose a data-driven bandwidth γ̂n from the integrated MSE for KDE estimation:

γ̂n = argmin
γ

E[‖Φγ ∗ P̂Υ − pΥ‖2
L2(R)]



Numerical application: Nonlinear oscillator
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Figure: Elasto-plastic mechanical oscillator with kinematic hardening. The linear parameters are the mass m, stiffness k,
damping ratio ξ. The non linearity is controlled by the yield limit Y and the post-yield stiffness a.

z̈(t) + 2βωLż(t) + fNL(t) = −s(t) ,

Table: Epistemic uncertainties on the elasto-plastic oscillator

parameter distribution mean c.o.v
m Lognormal 1 10%
k Lognormal 900 30%
ξ Lognormal 0.02 50%
Y Lognormal 5× 10−3 30%
a Lognormal 0.2 30%
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Figure: Aggregated first order Sobol indices on the fragility curve, 20 replications with sample size n = 10, 000
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Figure: Aggregated total order Sobol indices on the fragility curve, 20 replications with sample size n = 10, 000
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Figure: MMD based indices on the probability of failure Υ using Silverman’s rule of thumb, 20 replications with sample size
n = 10, 000



Conclusion

Definition of a metamodel on bouth epistemic and seismic uncertainties.

Global Sensitivity Analysis framework on epistemic uncertainties on fragility curves’ related QoIs.

MMD-based sensitivity indices to handle more complex input/output relationships.



Thank you for your attention !
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Bertrand Iooss and Löıc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based
on gaussian processes. Reliability Engineering & System Safety, 187:58–66, 2019.

Robert P. Kennedy. Risk based seismic design criteria. Nuclear Engineering and Design, 1999.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural Safety,
2009. ISSN 0167-4730. Risk Acceptance and Risk Communication.

Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R.G.
Lanckriet. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learn-
ing Research, 2010.

Sebastien Da Veiga. Global sensitivity analysis with dependence measures. Journal of Statistical Compu-
tation and Simulation, 2015.



Appendix



Nonlinear oscillator
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Figure: Elasto-plastic mechanical oscillator with kinematic hardening. The linear parameters are the mass m, stiffness k,
damping ratio ξ. The non linearity is controlled by the yield limit Y and the post-yield stiffness a.
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