Active learning strategies for seismic fragility curve estimation with guarantees
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1. Introduction

Seismic fragility curve is a key quantity of interest for
seismic risk assessment. The binary random vari-
able S gives the state of the system (0: idle, 1: fail-
ure) and the real rv. X € R corresponds to the
logarithm of a seismic intensity measure I M (such
as peak ground acceleration).

Observation of S requires expensive numerical
simulations, conversely the observation of X is
considered cheap. We suppose a binary regression
model

[ S|X ~ B(u(X)), ]

where 1 : R — [0, 1] is the conditional mean of S,
which defines the fragility curve.
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Figure 1: Graphical representation of a fragility
curve.

2. Adaptive importance sampling

Given X with pdf pand a space of |0, 1|-valued func-
tions F = {fy,0 € © C R}, we want to estimate
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0y = argmin E[u(X)— f3(X))?] = argmin E[lg( X, S)]
dS(S dS(S

.

with £y(x, s) = (s — fo(x))%

Considering X;'s iid with pdf p, the empirical esti-

mator is
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Importance sampling [1] may be used to reduce
training loss variance. The distribution of the X;'s is
replaced by a well-chosen instrumental distribution
that minimizes asymptotic variance:

[ ao() o< VE[lo(X, S)IX = a]p(x) . ]

A The optimal distribution ¢; may increase dra-
matically the variance for small n [1], so we use a

defensive instrumental distribution:
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qoc(x) =ep(x) + (1 —e)gp(x), €€ (0,1),
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The instrumental distribution depending on 6, the
algorithm is called adaptive importance sampling
(AIS) [2], the AIS estimator 8, is defined as follows:
-
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- (1) Initialize 6, ,

(2) Ru(0) =15 2R 0(X,, ;)
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- (3) 6, = argmin R,,(6) .
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'The purpose of this PhD is to alleviate.
 computational burden for seismic fragility:
. curve estimation and to propagate epis-!

I ° ° ° °
'temic uncertainties from the mechanical!

'model to seismic fragility curves. An ac-.

 tive learning algorithm is used to reduce:
| o« e .

1 training loss variance and accelerate con-
i

rvergence. Epistemic uncertainties propa-,
' gation will be studied in further works. :
4

3. Theoretical results

The main theoretical result is the asymptotic nor-
mality of the AIS estimator 6,

(Theorem: Denote r(0) = E[ly(X,S)]. With ap—\
oropriate regularity conditions, /n(6, — 6) is
asymptotically normal with mean zero and co-
variance matrix 7(6y) 'V (qg, -, L9, ) (7(60) )" with

p(X)Vggo(X, S)VKQO(X, S)T
V(go,or bo,) = E
(e Ea) [ (X
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The proof arguments are the same as for classi-
cal M-estimation [3], we only have to consider that
R,(0) is a martingale.

4. Numerical results

(4, Numerical results

Introduced in the early 1980s for nuclear
safety assessment, the lognormal model F =

{0(*0)), (0, ) € R™ x R™}, where @ is the
cdf of the standard Gaussian distribution and X =
log(IM), is widely used in many applications.

The studied model is a nonlinear mechanical oscil-
lator with kinematic hardening [4] subjected to arti-
ficial seismic signals, the seismic intensity measure
considered in this case is the peak ground accelera-

tion (PGA). The study is done with a pool of 20,000
unlabeled datapoints.
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Figure 2: Nonlinear mechanical oscillator with kine-
matic hardening with parameter, f;, = 5 Hz, § =
2%, the yield limitis Y = 5.107° m and the post-yield
stiffness is 20% of the elastic stiffness hence a = (.2

Setting Z = maxc|o 7 |2(t)|. The failure for this sys-
tem is for instance defined by

[ S =1z-v) ]
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Figure 4: Mean train error for random strategy and
defensive AIS with a mixing parameter ¢ = 1077,
Initial size of 20 random observations, with 500
replications of 250 labeled datapoints using AlS.
The dotted lines represent the confidence intervals
(£20). The training and testing error’s variances are
reduced thanks to AlS.
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Figure 5: Graphical representation of the lognormal
fragility curve estimate with 20,000 datapoints,
the original distribution p(x) and the defensive in-
strumental distribution q(x) with € = 1072

As illustrated in Figure 5, AIS queries intensity mea-
sures in the transition region of the fragility curve
between no failure and certain failure of the sys-
tem. This behaviour decreases the estimator’s vari-
ance.
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'Having both motivating numerical results .
.and theoretical guarantees, AlS is a well:
 suited active learning strategy. A remain-

1ing issue is to improve initialization of the
ialgorithm.
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