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Introduction1.

Seismic fragility curve is a key quantity of interest for
seismic risk assessment. The binary random vari-
able S gives the state of the system (0: idle, 1: fail-
ure) and the real r.v. X ∈ R corresponds to the
logarithm of a seismic intensity measure IM (such
as peak ground acceleration).

Observation of S requires expensive numerical
simulations, conversely the observation of X is
considered cheap. We suppose a binary regression
model

S|X ∼ B(µ(X)) ,

where µ : R → [0, 1] is the conditional mean of S,
which defines the fragility curve.

Figure 1: Graphical representation of a fragility
curve.

Adaptive importance sampling2.

GivenX with pdf p and a space of [0, 1]-valued func-
tions F = {fθ, θ ∈ Θ ⊂ Rm}, we want to estimate

θ0 = argmin
θ∈Θ

E[µ(X)−fθ(X))2] = argmin
θ∈Θ

E[`θ(X,S)] ,

with `θ(x, s) = (s− fθ(x))
2.

Considering Xi’s iid with pdf p, the empirical esti-
mator is

θ̂n = argmin
θ∈Θ

1

n

n∑
i=1

`θ(Xi, Si) .

Importance sampling [1] may be used to reduce
training loss variance. The distribution of the Xi’s is
replaced by a well-chosen instrumental distribution
that minimizes asymptotic variance:

qθ(x) ∝
√

E[`θ(X,S)2|X = x]p(x) .

4! The optimal distribution q∗θ may increase dra-
matically the variance for small n [1], so we use a
defensive instrumental distribution:

qθ,ε(x) = εp(x) + (1− ε)qθ(x), ε ∈ (0, 1),

The instrumental distribution depending on θ, the
algorithm is called adaptive importance sampling
(AIS) [2], the AIS estimator θ̃n is defined as follows:

• (1) Initialize θ0 ,

• (2) R̃n(θ) =
1
n

n∑
i=1

p(Xi)
qθ̃i−1,ε

(Xi)
`θ(Xi, Si) ,

• (3) θ̃n = argmin R̃n(θ) .

The purpose of this PhD is to alleviate
computational burden for seismic fragility
curve estimation and to propagate epis-
temic uncertainties from the mechanical
model to seismic fragility curves. An ac-
tive learning algorithm is used to reduce
training loss variance and accelerate con-
vergence. Epistemic uncertainties propa-
gation will be studied in further works.

AIM OF THE PhD

Theoretical results3.

The main theoretical result is the asymptotic nor-
mality of the AIS estimator θ̃n

Theorem: Denote r(θ) = E[`θ(X,S)]. With ap-
propriate regularity conditions,

√
n(θ̃n − θ0) is

asymptotically normal with mean zero and co-
variance matrix r̈(θ0)

−1V (qθ0,ε, `θ0)(r̈(θ0)
−1)T with

V (qθ0,ε, `θ0) = E
[
p(X)∇`θ0(X,S)∇`θ0(X,S)T

qθ0,ε(X)

]

The proof arguments are the same as for classi-
cal M-estimation [3], we only have to consider that
R̃n(θ) is a martingale.

Numerical results4.

Introduced in the early 1980s for nuclear
safety assessment, the lognormal model F =

{Φ(log(
IM
α )

β ), (α, β) ∈ R+∗ × R+∗}, where Φ is the
cdf of the standard Gaussian distribution and X =
log(IM), is widely used in many applications.

The studied model is a nonlinear mechanical oscil-
lator with kinematic hardening [4] subjected to arti-
ficial seismic signals, the seismic intensity measure
considered in this case is the peak ground accelera-
tion (PGA). The study is done with a pool of 20,000
unlabeled datapoints.
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Figure 2: Nonlinear mechanical oscillator with kine-
matic hardening with parameter, fL = 5 Hz, β =
2%, the yield limit is Y = 5.10−3 m and the post-yield
stiffness is 20% of the elastic stiffness hence a = 0.2

Setting Z = maxt∈[0,T ] |z(t)|. The failure for this sys-
tem is for instance defined by

S = 1(Z>Y )
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Figure 4: Mean train error for random strategy and
defensive AIS with a mixing parameter ε = 10−2.
Initial size of 20 random observations, with 500
replications of 250 labeled datapoints using AIS.
The dotted lines represent the confidence intervals
(±2σ). The training and testing error’s variances are
reduced thanks to AIS.
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Figure 5: Graphical representation of the lognormal
fragility curve estimate with 20,000 datapoints,
the original distribution p(x) and the defensive in-
strumental distribution q(x) with ε = 10−2.

As illustrated in Figure 5, AIS queries intensity mea-
sures in the transition region of the fragility curve
between no failure and certain failure of the sys-
tem. This behaviour decreases the estimator’s vari-
ance.

Having both motivating numerical results
and theoretical guarantees, AIS is a well
suited active learning strategy. A remain-
ing issue is to improve initialization of the
algorithm.

CONCLUSION
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